IMnl’s Lifecycle Assessment Project

Mohammed Ali

IMnl’s 39th Annual Conference

Istanbul, Turkey, June 4-6, 2013
Project Overview

- LCA (ISO 14040/14044:2006) provides a comprehensive measurement of environmental performance throughout a product supply chain.
- Hatch is conducting an LCA of the global manganese alloy industry on behalf of the IMnI and its members.
Project Overview (cont.)

- LCA culminates process, mass-energy balance and environmental modeling of 16 manganese mines and smelters, globally.
- LCA provides industry-wide benchmarks for external advocacy and site process optimization:
 - Fuel use;
 - Electricity;
 - Environmental controls;
 - Air & GHG emissions;
 - Water use and quality;
 - Dust emissions;
 - Solid waste generation;
 - Others.
Outline

• Background
 Origins of the project and the IMnI Sustainability Programme.

• Project Scope
 Aims of the project, global industry representation, key expected outcomes.

• Project Status Update
 Current project stage and dates for key deliverables.

• Preliminary Findings
 Selected industry benchmarks, insights, and potential range for environmental and cost savings.

• Next Steps & Opportunities
 Upcoming results, site benchmarking, and other opportunities.
About Hatch

- Employee owned
- Projects in more than 150 countries
- More than 11000 professionals worldwide
- More than US$35 billion of projects now under management
- EPCM, Integrated Teams, Project and Construction Management
- Consulting – process, technology and business
- In-house engineering services for operations
- Serving mining & metals, energy and infrastructure sectors for more than 50 years
Hatch Services and Sectors

- Consulting
- Environmental
- Operations Support
- Project Delivery Group
- Systems & Process Control
- Technologies
- Energy
- Infrastructure
- Metals

Sectors & Business Units

HATCH™
The Manganese Sustainability Programme

The International Manganese Institute (IMnI) launched a Manganese Sustainability Programme designed to:

1. Achieve a shared understanding of sustainability in the industry,
2. Improve the sustainability of the manganese industry through IMnI activities,
3. Ensure that the industry follows responsible business practices.

A Lifecycle Assessment of Manganese was an important step towards achieving these objectives.
LCA Addresses Metals Systems

- LCA is the most well established tool for comprehensive environmental foot printing, conducted previously by similar metals industries:
 - Steel, Worldsteel (2009)
 - Aluminum, EAA (2010)
 - Copper, ICA (2009)
 - Nickel, NI (2010)
 - Zinc, IZA (2009)
 - Chromium, ICDA (2007)

- Key Industry Drivers:
 - Communicate with the public and regulatory bodies on environmental issues.
 - Cost optimization and environmental risk mitigation through sharing best practices.
The Manganese Alloy LCA Project

Key Participants

- IMnI enlisted Hatch to conduct the LCA, managed by IMnI and with the participation of member company volunteers.
Objectives

• The IMnI identified the Manganese LCA as a key initiative to promote sustainability across the industry.

• **External Industry Communication:**
 • Generate comprehensive environmental data that is accurate and globally representative;
 • Provide a scientific basis for communicating the impacts of the Mn industry to external stakeholders.

• **Internal Environmental & Cost Performance:**
 • Foster sharing of best practices on environmental management within the industry;
 • Provide a global industry benchmark to compare and identify areas of environmental risk and cost saving opportunities within the manganese value chain;
Key Deliverables

• Deliverables geared towards intended applications:

• **Global LCA Report**
 • Globally averaged data;
 • A comprehensive model of a ‘typical’ manganese supply chain by process stage;
 • Representative of the industry as a whole;

• **Site LCA Benchmark Reports:**
 • Comparison to global benchmark data;
 • Identification of hotspots and cost and impact reduction opportunities;
 • Complimentary for participating sites;
 • Upon request for any mine or smelter.
System Boundaries

- LCA includes manganese mine/smelter activities and all associated upstream/downstream processes.
Globally Representative

- Environment and mass-energy balance models of 16 globally representative sites.

Regional distribution of participating sites

8,000,000 t Mn-ore mined
20% of global ore production.

1,200,000 t Mn-alloys produced
10% of global alloy production.
Current Phase of Project

- March 2012 – March 2013
 - Site visits;
 - Data collection;
 - Data validation.

- April 2013 – December 2013
 - Modelling & Analysis
 - Reporting.
Preliminary Findings

Mining - Impact Areas

Manganese ore & sinter (to smelters)

- Extraction & Hauling
 - Diesel Prod.
 - Power

- Crushing & Beneficiation

- Tailings/Waste Storage

- Sinter Plant
 - Coke Battery

- Air emissions
 - Overburden/waste
 - Dust generation
 - Tails/waste
 - Wastewater
 - Air emissions
Mining – Key Metrics

- Extraction & Hauling
 - Diesel: 7.1 kL
 - Overburden: 12.6 kt
 - ROM Ore: 2.0 kt
 - Average haul distance: 3.0 km

- Crushing & Beneficiation
 - Water (make-up): 2.6 ML
 - Electricity: 9.1 MWh

- Tailings/Waste Storage
 - Tails & Waste Ore: 0.8 kt

- Sinter Plant
 - Manganese ore & sinter (to smelters): 1 kt (43% Mn)

HATCH

Safety • Quality • Sustainability • Innovation
Mining – Savings Potential

- Energy use, air emissions and solid waste generation correlated to overburden and waste rock:

\[
R^2 = 0.9896, \quad m = 1.4
\]

\[\text{Diesel at Extraction (kL/kt prod.)} \]
\[\text{Overburden/ROM (wt.)} \]

1X Overburden Reduction
$2.0M USD diesel per million tonnes production (mobile equipment).

- Overburden/waste rock strongly linked to fuel costs associated with extraction and hauling.
Mining – Savings Potential

- Waste inputs in ROM feed correlated to electricity demand, water use, and tailings management:

![Graph showing Power Demand at Ore Processing Plant]

- Optimizing selection of ROM can reduce energy costs, tailings storage requirements and environmental liability.
Smelting - Impact Areas

- Preliminary Findings

- Smelting
 - Materials Handling
 - Diesel Prod.
 - Power Plant
 - Coke Battery
 - Si-source/Fluxes
 - Gas Plant
 - Off-gas Processing
 - Slag Processing
 - Refining
 - Crushing & Screening
 - Manganese alloys (to steelmaking)
 - Air emissions
 - Fugitive dust
 - Air emissions
 - Air emissions
 - Sludge/dust
 - Slag/waste
 - MnO Powder
Smelting – Key Metrics

Materials Handling
- **Smelting**
 - **Off-gas Processing**
 - **Slag Processing**
 - **Refining**

Crushing & Screening
- Manganese alloys (to steelmaking)

Power (at furnace)
- **Mn-Alloys**
 - 3.9 MWh
 - 560 kg Coal/Coke
 - 1000 kg Slag (generation)
 - 3.9 MWh + 560 kg + 1000 kg = 1 t-hm SiMn

Power (at furnace)
- **HC FeMn**
 - 2.7 MWh
 - 510 kg Coal/Coke
 - 770 kg Slag (generation)
 - 2.7 MWh + 510 kg + 770 kg = 1 t-hm HC FeMn

Diesel
- **Mn-Alloys**
 - 3 L
 - 0.8 kg Particulate emissions
 - 3 L + 0.8 kg = 1 t Mn-Alloys

HATCH
Smelting – Savings Potential

- Reducing Primary Dust Emissions
 - Large variation in primary (furnace) dust emissions;
 - Use of by-pass stacks during emergency conditions;
 - Opportunity for PM emission reduction through management of by-pass stack events;
 - Potential to achieve 0.1 kgPM/t-alloy without by-pass stack emissions.

- Energy Recovery from Furnace Off-gas
 - Dependent on furnace technology (closed vs. open);
 - Cost savings and air emission reductions through avoided purchased power.
 - Potential to provide ~10% of furnace power requirements.
Smelting – Savings Potential

- **Electricity Demand**
 - Increases with waste burden and slag generation;
 - Variation between sites shows some potential for further optimization.

Moving from last quartile to industry average, or industry average to best practice:

~ $300k USD/10kt
Next Steps (Upcoming)

- **Global LCA Report**
 - Comprehensive results on production inputs and environmental data:
 - Air emissions;
 - Water quality;
 - Hazardous waste;
 - Energy, etc;
 - Representative of the global industry;
 - A scientific basis for advocacy and stakeholder engagement.
Next Steps (Upcoming)

- **Site LCA Benchmarking Reports**
 - Comparison to global benchmarks;
 - Hot-spot identification;
 - Optimization opportunities;
 - Gap analysis & environmental risk evaluation.
Other Opportunities

- **Life Cycle Cost (LCC) Analysis**
 - Existing LCA data can be expanded to track and optimize operating costs;
 - Impact of price fluctuation and sensitivity of upstream inputs.

- **Regulatory Risk Evaluation**
 - Comparing the manganese industry with other sectors/metals to identify potential for emerging regulations.

- **Detailed Process / Environmental Optimization**
 - Application of Best Available Technologies identified through LCA;
 - Technical feasibility through to detailed design;
 - Pairing LCA models with thermodynamic simulation (e.g. slag phase optimization).
Thank you!

Mohammed Ali
mali@hatch.ca