The manganese industry worldwide – trends and opportunities

IMnl’s 39th Annual Conference
Istanbul – 6th June 2013

Duncan Hobbs
+44 20 3037 4497
duncan.hobbs@macquarie.com
The manganese industry worldwide – trends and opportunities

- Global steel production and future prospects
- Intensity of manganese usage in steelmaking
- China’s role as manganese consumer and producer
- Selection and use of manganese ferroalloys in steelmaking
- Manganese ore supply
- Summary and conclusions
The manganese industry worldwide – trends and opportunities

- Global steel production and future prospects
- Intensity of manganese usage in steelmaking
- China’s role as manganese consumer and producer
- Selection and use of manganese ferroalloys in steelmaking
- Manganese ore supply
- Summary and conclusions
Mn market overview – most ore is used to produce Mn ferroalloys for the steel industry

Source: CPM, K.Fowkes, Hatch, Macquarie Research, June 2013. Note: 2012 data, basis Mn units. 1. Some Mn ore is charged directly in blast furnace ironmaking, mainly in Japan and Korea. 2. Some SiMn is used to produce MC FeMn by silicothermic reduction, mainly in China. 3. American Petroleum Institute.
China drives world crude steel output to new records. Ex-Asia production still below pre-crisis peaks

Global crude steel production

Long term there is still substantial potential for growth in steel demand built on urbanisation.

Raising China’s urbanisation rate to levels similar to those in developed Asian or European countries will involve moving more than 300m people into towns and cities.

This number is equal to the entire population of the USA today and to China’s urbanisation since the early 1990s.

Source: UN, Macquarie Research, June 2013. Note: 2010 data. China and India forecasts are for 2030. Size of circles proportional to population in each country.
Steel demand will come not only from new building but also rebuilding of some existing urban areas

China’s existing urban landscape is changing – from hutong to high-rise!!

- Commodities consuming urbanisation is not only about expansion of the existing urban footprint
- It is also about redevelopment of some of the existing urban environment to meet demands for improved living conditions
- China’s urban residential floorspace per capita of urban population is less than two-thirds of high-income countries in Asia and Europe
- Redevelopment can of course make some use of recycled materials with obvious implications for primary commodities demand
- For manganese, however, usage is similar in EAF scrap-based steel making to input levels in primary steel making by the BF / BOF route

Source: Macquarie Research, June 2013
More and more cars will be coming onto the roads, helping to drive steel demand higher

- US motor vehicle ownership increased 2½ times 1920-1930
- Japan recorded an ever fast roll out from mid-60s to mid-70s
- Increasing China’s ownership 2½ times in next ten years will add ~170m vehicles to roads by early 2020s
- That’s equal to over two-thirds of the entire US vehicle fleet today
- China already adding over 20m units pa

Source: CEIC, JAMA, US Federal Highway Administration, US Census Bureau, Macquarie Research, June 2013
Growth in global crude steel output slowing in percentage terms but steady in tonnage terms

Annual average changes in global crude steel production

In percentage terms

<table>
<thead>
<tr>
<th>Period</th>
<th>% pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-2006</td>
<td>6.8%</td>
</tr>
<tr>
<td>2006-2012</td>
<td>3.5%</td>
</tr>
<tr>
<td>2012-2018</td>
<td>2.6%</td>
</tr>
</tbody>
</table>

In tonnage terms

<table>
<thead>
<tr>
<th>Period</th>
<th>mtpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-2006</td>
<td>68</td>
</tr>
<tr>
<td>2006-2012</td>
<td>49</td>
</tr>
<tr>
<td>2012-2018</td>
<td>44</td>
</tr>
</tbody>
</table>

Source: Worldsteel, Macquarie Research, June 2013. Note: 2018 data are forecasts.
Future steel production will be shaped by several factors driving demand and supply

Demand-side drivers

- Steel demand in populous developing countries
 - China, India and others
 - Emerging consumer class
 - Urbanisation and infrastructure development
 - Industrialisation
- Scope for substitution into and out of steel
 - Construction
 - Automotive
- Scope for thrifting in steel-based manufacturing
 - Lightweighting
- Migration of steel-based manufacturing industry

Supply-side drivers

- Consolidation of ownership and control
- Backward integration into raw materials
- De-integration of steelmaking and rolling, which has advantages and disadvantages
- Costs of iron and steelmaking, which vary widely by country and region
- Cost and availability of alternative raw materials and energy supplies
- Environmental and industrial policies
- Change in iron and steelmaking technology

Source: Macquarie Research, June 2013
Global crude steel output forecast to increase by over 15% from 2012-2018; China contributes 50% of total

Source: Worldsteel, Macquarie Research, June 2013. Note: 2013-2018 data are forecasts
The manganese industry worldwide – trends and opportunities

- Global steel production and future prospects
- Intensity of manganese usage in steelmaking
- China’s role as manganese consumer and producer
- Selection and use of manganese ferroalloys in steelmaking
- Manganese ore supply
- Summary and conclusions
Steel output has outgrown industrial production. Mn consumption has increased faster still

Global industrial production, crude steel output and Mn ferroalloys consumption

Source: CRU, IMnI, K.Fowkes, Worldsteel, Macquarie Research, June 2013
Intensity of manganese use in steelmaking has increased by 15% in the last decade

Source: K.Fowkes, IMnl, Worldsteel, Macquarie Research, June 2013. Note: data include EMM and direct charged Mn ore
Intensity of manganese usage is a function of process and product mix; there are opposing forces at work

Reducing intensity of manganese usage

- Falling OHF steel output and ingot casting
- Increasing proportion of flat steel products

Raising intensity of manganese usage

- Rising output of selected high-manganese steels outpacing rate of increase in overall crude steel output, especially for auto and energy sectors
- Key contribution from 200-series stainless steels (low-nickel austenitic stainless steels in which manganese is substituted for nickel)

Source: Macquarie Research, June 2013
OHF steelmaking and ingot casting continue to decline in tonnage terms and as share of total steel output

- Mn yield losses higher in OHF steelmaking / ingot casting than BOF / EAF steelmaking / continuous casting

Source: Worldsteel, Macquarie Research, June 2013
China’s output of flat steel products rising as a share of total output but still less than industrial countries

- Mild carbon steel flat products typically contain ~0.5% Mn, versus ~0.7% contained in long products
Adding Mn: 200-series stainless steel output has increased fivefold in the last decade

- 200S stainless steels typically contain 6%-15% Mn; 300S & 400S contain on average only ~1% Mn
- 200S <20% of total stainless steel output but accounts for two-thirds of Mn usage in stainless steel

Source: CSSC, IMnI, ISSF, K.Fowkes, Macquarie Research, June 2013
Adding Mn: 200-series stainless steel has contributed 25% to increased intensity of manganese use

Contributors to increased intensity of manganese usage in steel 2003-2012

Source: K.Fowkes, IMnl, ISSF, Worldsteel, Macquarie Research, June 2013
Adding Mn: auto output outpacing steel production and using more high strength steel to save weight

- Ex-China auto output has outpaced steel output
- More autos are using more high-strength steels, adding to intensity of manganese use

Ex-China autos and steel output

Source: LMC, OICA, Worldsteel, Macquarie Research, June 2013
The manganese industry worldwide – trends and opportunities

- Global steel production and future prospects
- Intensity of manganese usage in steelmaking
- China’s role as manganese consumer and producer
- Selection and use of manganese ferroalloys in steelmaking
- Manganese ore supply
- Summary and conclusions
Global Mn consumption running at record levels. China makes main contribution, now half of total

Source: K.Fowkes, IMnI, Macquarie Research, June 2013
China’s Mn ore resources: large but low-grade and limited relative to domestic demand

China’s major manganese regions

- China’s Mn ore resources are reported at almost 400m tonnes, on average grading ~22% Mn and occurring mainly in the south of the country, sufficient for >25 years at recent operating rates, although some regions are close to depletion.

- Most resources are siliceous carbonate ores, suitable for SiMn and MRS but not HC FeMn, and cannot be significantly upgraded by concentration.

<table>
<thead>
<tr>
<th>Province</th>
<th>Mn ore grade</th>
<th>Mn:Fe ratio</th>
<th>Silica</th>
<th>P</th>
<th>Mn ore resources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oxide ores ~32%</td>
<td>4:1</td>
<td>18%</td>
<td>0.1%</td>
<td>133</td>
</tr>
<tr>
<td>Guangxi</td>
<td>Carbonate ores ~22%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hunan</td>
<td>~20%</td>
<td>10:1</td>
<td>10%</td>
<td>0.1%</td>
<td>69</td>
</tr>
<tr>
<td>Other provinces</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>187</td>
</tr>
<tr>
<td>China total</td>
<td>~22%</td>
<td>6:1</td>
<td>16%</td>
<td>0.1%</td>
<td>389</td>
</tr>
</tbody>
</table>

Source: C&M, K.Fowkes, Hatch, SRK, USGS, Macquarie Research, June 2013. Note: 1. data are estimates for measured and indicated resources only at end-2010.
China’s Mn ore imports have increased fourfold in last decade; now supply 60% of local consumption

Source: China Customs, K.Fowkes, IMnI, Macquarie Research, June 2013
China swings from major net exporter to importer of Mn ferroalloys; EMM exports also falling until recently

Exports fell sharply after tax introduced 1st Jan 2009 … and China switched to (small) net importer for first time in 2012

EMM exports during GFC… …now rising after export tax ended on 1st Jan 2013

Source: China Customs, Macquarie Research, June 2013
China’s Mn ferroalloys usage differs from elsewhere. More SiMn, MLC FeMn rising faster, HCFeMn falling

- Unit SiMn usage in steelmaking has increased in the last decade; typically alloy of choice where practical
- HCFeMn usage has fallen as MLC FeMn has risen, especially in China in part for reasons related to MRS¹

Use of Mn ferroalloys in steelmaking

Source: K.Fowkes, IMnl, Worldsteel, Macquarie Research, June 2013. Note: 1. MRS is manganese rich slag
China’s Mn contained in mine output second only to South Africa but ore grades are low

Global Mn ore output in 2012

Source: K.Fowkes, IMnI, Macquarie Research, June 2013
China’s Mn ferroalloys producers make use of local low-grade, low-ratio ores, reducing import demand.

In China, low-grade, low ratio Mn ores, unsuitable for direct use in alloy production, are smelted in a separate first step in which the Mn reports to the slag. The Mn-rich slag (MRS) produced has a Mn grade and Mn:Fe ratio more in line with targets for alloy production. Note, however, it cannot be used alone must still be blended with other ores.

Source: C&M, Metallurgy of Manganese, Macquarie Research, June 2013
The manganese industry worldwide – trends and opportunities

- Global steel production and future prospects
- Intensity of manganese usage in steelmaking
- China’s role as manganese consumer and producer
- Selection and use of manganese ferroalloys in steelmaking
- Manganese ore supply
- Summary and conclusions
Mn use in steelmaking – a summary

➔ Mn has two main uses in modern steelmaking

1. As an alloying agent
 Mn increases tensile strength, hardness, toughness, wear resistance and machinability

2. To "fix" residual sulphur
 No substitutes and essential in all steelmaking but use reduced by adoption of hot metal desulphurisation as standard practice today

➔ Mn ferroalloy(s) and amount used are a function of three main factors

1. The aim chemistry of the finished steel product
 Mn content allied to carbon and silicon control. Flat steel products typically lower in carbon than long steel products. Silicon control important in surface critical flat products

2. Steelmaking process and practice, which affect efficiency in achieving aim chemistry
 No significant difference between BF / BOF and EAF steelmaking, except where bottom-stirring used to reduce carbon on tapping in primary steelmaking

3. Cost of alternative alloying additions within constraints of aim chemistry and steel plant design
 Configuration of hoppers feeding furnaces

Source: Hatch, K.Fowkes, Macquarie Research, June 2013
SiMn typically steelmakers’ alloy of choice when practical within product and process constraints

Steelmakers’ Mn ferroalloys selection driven first and foremost by aim chemistry of steel product within constraints of steelmaking process and plant design

Subject to product and process constraints, SiMn typically alloy of choice for three reasons:

1. Two alloys are added in one product
2. De-oxidising performance of Si in SiMn is more powerful than in FeSi
3. Adding SiMn avoids losing heat to the melting of additional iron units in the LMF, (important for cycle time and productivity)

SiMn often more cost effective than equal mix of HCFeMn and FeSi in most markets (US market excepted due to AD duties on imports of SiMn)

Source: CRU, Hatch, K.Fowkes, Macquarie Research, June 2013
Future shifts in steel product mix may alter balance of Mn ferroalloys used by steelmakers

- Forecasts of an increasing uptake of higher strength, higher manganese steels in certain applications, especially auto and energy steels, may see steelmakers seek adaptations and/or new products in Mn ferroalloys
 - Products that mix better and melt faster with greater consistency in sizing and alloy chemistry. Melting speed is important for cycle time. Mn recovery from ferroalloy to steel is a function of steelmaking practice but also alloy quality; consistent recovery reduces risk of “off-spec” steel
 - Higher Mn grade to reduce volume additions required and resultant drop in steel temperature, with positive implications for cycle time, productivity and cost control
 - Lower content of carbon and deleterious residuals, notably hydrogen, nitrogen, phosphorous
- In future, steelmakers may consider melting Mn ferroalloys to add in liquid form at tapping and in the LMF with the advantages this would be easier to add to the liquid steel stream and reduce energy use. This is already practiced by some stainless and speciality steelmakers

Source: Hatch, K.Fowkes, Macquarie Research, June 2013
The manganese industry worldwide – trends and opportunities

➔ Global steel production and future prospects

➔ Intensity of manganese usage in steelmaking

➔ China’s role as manganese consumer and producer

➔ Selection and use of manganese ferroalloys in steelmaking

➔ Manganese ore supply

➔ Summary and conclusions
South Africa, China, Australia drive rise in global Mn ore mine output; China’s share now slipping

Source: K.Fowkes, IMnI, Macquarie Research, June 2013
Prospects for supplies of Mn ore from key producer countries in the coming years; no obvious shortage

<table>
<thead>
<tr>
<th>Key countries</th>
<th>Output, mt(^1)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>3,795</td>
<td>BHPB driving output but commitment uncertain. Exploration prospects in NT, WA</td>
</tr>
<tr>
<td>Brazil</td>
<td>1,130</td>
<td>Medium to high grade resources but depleting. Not a priority for all operators</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>-</td>
<td>High-grade resources but lacking infrastructure. Tambao project</td>
</tr>
<tr>
<td>China</td>
<td>3,700</td>
<td>Domestic resource base low grade, progressively depleting. Import dependency set to rise</td>
</tr>
<tr>
<td>Gabon</td>
<td>1,195</td>
<td>Large, high-grade undeveloped resources. Moanda expansion. Bembélé ramp up</td>
</tr>
<tr>
<td>Ghana</td>
<td>365</td>
<td>Low-grade but clean ore. Low cost mining, large resource. Expansion expected</td>
</tr>
<tr>
<td>India</td>
<td>800</td>
<td>Domestic oriented output, recently falling with offset from higher imports</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>380</td>
<td>Remote, low grade, high cost mines. Challenges at corporate level</td>
</tr>
<tr>
<td>Russia</td>
<td>-</td>
<td>Chek-Su, SGMK projects but uncertain time line</td>
</tr>
<tr>
<td>S.Africa</td>
<td>3,790</td>
<td>Huge resources, high-grade and low cost by global standards but limited infrastructure</td>
</tr>
<tr>
<td>SE Asia</td>
<td>460</td>
<td>Indonesia, Malaysia, Myanmar, Vietnam. Low cost but mainly low grade; under-explored</td>
</tr>
<tr>
<td>Ukraine</td>
<td>585</td>
<td>Large resources but low-grade. Tavrichesky mine could be re-opened</td>
</tr>
<tr>
<td>W.Africa</td>
<td>90</td>
<td>DRC, Côte d’Ivoire, Namibia, Zambia. High grade, potentially low cost; under-explored, lacking infrastructure</td>
</tr>
</tbody>
</table>

Source: CRU, K.Fowkes, Macquarie Research, June 2013. Note: 1. 2012 Mn contained
S. Africa’s infrastructure for Mn ore exports is limited. Long lead times to expand (limiting supply meanwhile)

<table>
<thead>
<tr>
<th>Route</th>
<th>Capacity</th>
<th>Latest status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Elizabeth by rail</td>
<td>5.5m tpa</td>
<td>Previous commitment to discontinue exports through Port Elizabeth by 2016 now looks unlikely before 2017-18. Rail allocation among competing producers in the meantime still to be decided</td>
</tr>
<tr>
<td>Saldanha Bay by rail</td>
<td>~13m tpa</td>
<td>Transnet is no longer considering allocation of capacity for Mn ore shipments in the next Sishen–Saldanha Bay rail expansion. New capacity will not be available before 2016/17 in any case</td>
</tr>
<tr>
<td>Durban by rail and road</td>
<td>3m–4m tpa</td>
<td>BMA terminal is expanding and offers option of container shipping. Rail access increasing but some road haulage still required and remains expensive (~US$1.80-1.90/dmtu for "low" grade ore)</td>
</tr>
<tr>
<td>Richards Bay by road</td>
<td>~1m tpa</td>
<td>Trucking to Richards Bay up to ~15% more expensive than to Durban. Mn ore exports must compete with (increasing) chrome ore and iron ore shipments and volumes are falling</td>
</tr>
<tr>
<td>Coega by rail</td>
<td>10m–16m tpa</td>
<td>Transnet’s preferred option. ZAR2.7bn first phase approved by TRF CEO in May. Ambitious target to reach 12mtpa by mid-2017. However, industry worries over cost estimated at ~ZAR11bn. Local Mn ferroalloys smelter unlikely to be built</td>
</tr>
</tbody>
</table>

Source: Assmang, Macquarie Research, June 2013
Mn mining consolidation unchanged in ten years. Possible ownership changes may offer opportunities

- Mn mining consolidation unchanged in ten years. China has offset rising output among the majors. Four firms ratio ~50%
- Market for higher grade ores highly concentrated. Four firms ratio >95%
- Some major miners reported reviewing ownership (issues of scale among others) offering opportunity for new entrants; vertical integration unlikely

Source: Company Reports, K.Fowkes, IMnI, Macquarie Research, June 2013. Note: high-grade ore defined as ≥40% Mn contained
The manganese industry worldwide – trends and opportunities

- Global steel production and future prospects
- Intensity of manganese usage in steelmaking
- China’s role as manganese consumer and producer
- Selection and use of manganese ferroalloys in steelmaking
- Manganese ore supply
- Summary and conclusions
The manganese industry worldwide – trends and opportunities

Summary and conclusions

- Global steel output running at record levels. Prospects for further increases promising driven by urbanisation and additions to auto fleet, especially in China
- Intensity of manganese use in steelmaking has been rising and likely to continue albeit at probably more moderate rate (scope for further efficiency gains reduced)
- Don’t doubt demand side potential for manganese!!
- China likely to remain world’s largest consumer of manganese for many years yet and import dependence likely to increase with local resources relatively limited
- Steelmakers demands of Mn ferroalloys likely to continue changing but with SiMn remaining alloy of choice subject to product / process constraints
- Sufficient supply in prospect to meet demand into second half of decade, despite South African infrastructure constraints. Longer term expansion with care
Recommendation definitions

Macquarie - Australia/New Zealand
- **Outperform**: return > 3% in excess of benchmark return
- **Neutral**: return within 3% of benchmark return
- **Underperform**: return < 3% below benchmark return

Macquarie - Asia/Europe
- **Outperform**: expected return > +10%
- **Neutral**: expected return from -10% to +10%
- **Underperform**: expected < -10%

Macquarie First South - South Africa
- **Outperform**: return > 10% in excess of benchmark return
- **Neutral**: return within 10% of benchmark return
- **Underperform**: return > 10% below benchmark return

Macquarie - Canada
- **Outperform**: return > 5% in excess of benchmark return
- **Neutral**: return within 5% of benchmark return
- **Underperform**: return > 5% below benchmark return

Macquarie - USA
- **Outperform**: return > 5% in excess of benchmark return
- **Neutral**: return within 5% of benchmark return
- **Underperform**: return > 5% below benchmark return

Volatility index definition

This is calculated from the volatility of historic price movements.

Very high–highest risk – Stock should be expected to move up or down 60-100% in a year – investors should be aware this stock is highly speculative.

High – stock should be expected to move up or down at least 40-60% in a year – investors should be aware this stock could be speculative.

Medium – stock should be expected to move up or down at least 30-40% in a year.

Low-medium – stock should be expected to move up or down at least 25-30% in a year.

Low – stock should be expected to move up or down at least 15-25% in a year.

*Applicable to Australian/NZ stocks only

Recommendation – 12 months

Note: Quant recommendations may differ from Fundamental Analyst recommendations

Financial definitions

All "Adjusted" data items have had the following adjustments made:

Added back:
- goodwill amortisation, provision for catastrophe reserves, IFRS derivatives & hedging,
- IFRS impairments & IFRS interest expense

Excluded:
- non recurring items, asset revals, property revals, appraisal value uplift, preference dividends & minority interests

EPS = adjusted net profit / average shareholders funds

ROA = adjusted ebit / average total assets

ROA Banks/Insurance = adjusted net profit / average total assets

ROE = adjusted net profit / average shareholders funds

Gross cashflow = adjusted net profit + depreciation

*equivalent fully paid ordinary weighted average number of shares

All Reported numbers for Australian/NZ listed stocks are modelled under IFRS (International Financial Reporting Standards).

Recommendation proportions – for quarter ending 31 March 2013

<table>
<thead>
<tr>
<th></th>
<th>AU/NZ</th>
<th>Asia</th>
<th>RSA</th>
<th>USA</th>
<th>CA</th>
<th>EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outperform</td>
<td>45.12%</td>
<td>53.24%</td>
<td>50.00%</td>
<td>40.70%</td>
<td>62.98%</td>
<td>43.30%</td>
</tr>
<tr>
<td>Neutral</td>
<td>41.52%</td>
<td>28.01%</td>
<td>41.43%</td>
<td>55.01%</td>
<td>32.60%</td>
<td>34.10%</td>
</tr>
<tr>
<td>Underperform</td>
<td>13.36%</td>
<td>18.74%</td>
<td>8.57%</td>
<td>4.29%</td>
<td>4.42%</td>
<td>22.60%</td>
</tr>
</tbody>
</table>

(for US coverage by MCUSA, 6.10% of stocks covered are investment banking clients)

(for US coverage by MCUSA, 4.91% of stocks covered are investment banking clients)

(for US coverage by MCUSA, 3.33% of stocks covered are investment banking clients)
Company Specific Disclosures:
Important disclosure information regarding the subject companies covered in this report is available at www.macquarie.com/research/disclosures.

Analyst Certification:
The views expressed in this research accurately reflect the personal views of the analyst(s) about the subject securities or issuers and no part of the compensation of the analyst(s) was, is, or will be directly or indirectly related to the inclusion of specific recommendations or views in this research. The analyst principally responsible for the preparation of this research receives compensation based on overall revenues of Macquarie Group Ltd ABN 94 122 169 279 (AFSL No. 318062) (MGL) and its related entities (the Macquarie Group) and has taken reasonable care to achieve and maintain independence and objectivity in making any recommendations.

General Disclaimers:
Macquarie Securities (Australia) Ltd; Macquarie Capital (Europe) Ltd; Macquarie Capital Markets Canada Ltd; Macquarie Capital Markets North America Ltd; Macquarie Capital (USA) Inc; Macquarie Capital Securities Ltd and its Taiwan branch; Macquarie Capital Securities (Singapore) Pte Ltd; Macquarie Securities (NZ) Ltd; and Macquarie First South Securities (Pty) Limited; Macquarie Capital Securities (India) Pvt Ltd; Macquarie Capital Securities (Malaysia) Sdn Bhd; Macquarie Securities Korea Limited and Macquarie Securities (Thailand) Ltd are not authorized deposit-taking institutions for the purposes of the Banking Act 1959 (Commonwealth of Australia), and their obligations do not represent deposits or other liabilities of Macquarie Bank Limited ABN 46 008 583 542 (MBL) or MGL. MBL does not guarantee or otherwise provide assurance in respect of the obligations of any of the above mentioned entities. MGL provides a guarantee to the Monetary Authority of Singapore in respect of the obligations and liabilities of Macquarie Capital Securities (Singapore) Pte Ltd for up to SGD 35 million. This research has been prepared for the general use of the wholesale clients of the Macquarie Group and must not be copied, either in whole or in part, or distributed to any other person. If you are not the intended recipient you must not use or disclose the information in this research in any way. If you received it in error, please tell us immediately by return e-mail and delete the document. We do not guarantee the integrity of any e-mails or attached files and are not responsible for any changes made to them by any other person. MGL has established and implemented a conflicts policy at group level (which may be revised and updated from time to time) (the "Conflicts Policy") pursuant to regulatory requirements (including the FSA Rules) which sets out how we must seek to identify and manage all material conflicts of interest. Nothing in this research shall be construed as a solicitation to buy or sell any security or product, or to engage in or refrain from engaging in any transaction. In preparing this research, we did not take into account your investment objectives, financial situation or particular needs. Before making an investment decision on the basis of this research, you need to consider, with or without the assistance of an adviser, whether the advice is appropriate in light of your particular investment needs, objectives and financial circumstances. There are risks involved in securities trading. The price of securities can and does fluctuate, and an individual security may even become valueless. International investors are reminded of the additional risks inherent in international investments, such as currency fluctuations and international stock market or economic conditions, which may adversely affect the value of the investment. This research is based on information obtained from sources believed to be reliable but we do not make any representation or warranty that it is accurate, complete or up to date. We accept no obligation to correct or update the information or opinions in it. Opinions expressed are subject to change without notice. No member of the Macquarie Group accepts any liability whatsoever for any direct, indirect, consequential or other loss arising from any use of this research and/or further communication in relation to this research. Clients should contact analysts at, and execute transactions through, a Macquarie Group entity in their home jurisdiction unless governing law permits otherwise.

Country-Specific Disclaimers:
Australia: In Australia, research is issued and distributed by Macquarie Securities (Australia) Ltd (AFSL No. 238947), a participating organisation of the Australian Securities Exchange. New Zealand: In New Zealand, research is issued and distributed by Macquarie Securities (NZ) Ltd, a NZX Fir. Canada: In Canada, research is prepared, approved and distributed by Macquarie Capital Markets Canada Ltd, a participating organisation of the Toronto Stock Exchange, TSX Venture Exchange & Montréal Exchange. Macquarie Capital Markets North America Ltd., which is a registered broker-dealer and member of FINRA, accepts responsibility for the contents of reports issued by Macquarie Capital Markets Canada Ltd in the United States and sent to US persons. Any person wishing to effect transactions in the securities described in the reports issued by Macquarie Capital Markets Canada Ltd should do so with Macquarie Capital Markets North America Ltd. The Research Distribution Policy of Macquarie